

Lecture outline

- Description of ecosystems
- Primary production (vs. biomass)
 Controls on primary productivity
 - Food webs
- Secondary productivity
 - Energetic efficiencies
- Energy flow through ecosystems

What's an ecosystem?

- •??
- Coined by Tansley in 1935
- Focuses on energy flow and nutrient cycling

What's energy flow?

• Can *you* be considered an ecosystem?

Arthur Tansley

A forest ecosystem Respiration Sun Radiant energy CO. CO, Consumptio 02 Litterfa Autotrophs H₂O Untake Nutrients Inactive ord Some matter, s utrients in nutrients Decomposition Detritus

Energy and thermodynamics

- What is energy?
- 1st law: energy cannot be created or destroyed; it is transformed or moved
 - Eco. example?
- 2nd law: transfer of energy is accompanied by a loss of energy as waste; entropy, or disorder, is increased
 - Eco. example?
- Useful here because...

Biomass vs. Productivity energy/space vs. energy/space/time

Primary production

- Energy produced by ?? (mostly) • = autotrophic production
 - = carbon fixation
- Gross primary production (GPP) = ?
- Net primary production (NPP) = ?
- Is GPP or NPP a good measure of what is available to consumers (i.e., heterotrophs)?

What controls primary production?

Environmental controls of 1° production (2)

Environmental controls of 1° production (4)

Environmental controls of 1° production (5) Human Appropriation of the Products of Photosynthesis

Nearly 40% of potential terrestrial net primary productivity is used directly, co-opted, or foregone because of human activities

Peter M. Vitousek, Paul R. Ehrlich, Anne H. Ehrlich, and Pamela A. Matson

Table 4. High calculation of net primary productivity (NPP) co-opted by humans: additions to Table 3 from processes that co-opt or degrade NPP.		BioScience 1
Process	Amount (Pg)	
Previous terrestrial total		
(Table 3)	40.6	
Conversion of forest to pasture	9.0	
Desertification	4.5	
Loss to human areas	2.6	
Total terrestrial	58.1	
or lost (58,1/149,8)	18.8	
Percent terrestrial plus	30.0	
aquatic co-opted or lost		
[60.1/(149.8 + 92.4)]	24.8	

Robert Paine vs. Pisaster

Bridging trophic cascades & food webs

HSS (1960)

- If we combine our understanding of food webs and the existence of trophic cascades, what do we learn?
- Two predictions:
 - Even number of trophic levels emphasizes roles of consumers
- Odd number of trophic levels encourage "the world to be green."
- Bottom-up vs. top-down regulation

Secondary production

- Production by ?
- Practically speaking, it's all 'net' secondary production
- In one measurement, provides two important pieces of information:
 - individual growth
 - population survivorship

Secondary production (2)

- . So, how do you make 2° production?
- P = C R (F + U)

Asian palm civet

4

How efficient are these processes? (1)

- Assimilation efficiency =
 - Food assimilated / food consumed
 - Measures how effective the <u>ingested</u> food is made available for different bodily needs
- Differs by type of food:
 - Leaf-eating insects: AE may be 10 20%
 - Predatory insects: AE may be 70% or more
- Differs by organism:
 - Broad averages
 - Endotherm: AE = 78%
 - Ectotherm: AE = 42%

How efficient are these processes (2)?

- Net production efficiency = Production / food assimilated
 - Measures how effective the <u>assimilated</u> food is converted to new tissue and reproduction
- Differs less by type of food:
 - Stream insects: NPE = 50%
- Differs by organism:
 - Broad averages
 - Endotherms: NPE = 2.5%
 - Ectotherms: NPE = 45%

